钨钒共溅掺杂二氧化钒薄膜的制备及其光学特性

覃 源1 李 毅1,2 方宝英1 佟国香1 王晓华1,3 丁 杰1 王 峰1

严 梦1 梁倩1 陈少娟1 陈建坤1 郑鸿柱1 袁文瑞1

1上海理工大学光电信息与计算机工程学院,上海 200093

(²上海现代光学系统重点实验室,上海 200093;³上海电力大学计算机与信息工程学院,上海 200090/

摘要 为了解决 VO₂ 薄膜掺杂后相变温度高,相变前后红外透射率差值减小等问题,利用磁控共溅射的方法,在 普通玻璃基底上溅射沉积钨钒薄膜,再在常压氮氧混合气氛中退火,制备了性能良好的掺钨 VO₂ 薄膜。分析对比 了不同混合气氛中氧化生成的钨掺杂 VO₂ 薄膜的组分和结构,发现 VO₂ 有明显的(011)和(200)生长取向,并且随 着混合气氛中氧含量的增加,薄膜颗粒大小从 50 nm 增大到 80 nm。钨掺杂 VO₂ 薄膜的相变温度下降到 31 ℃,相 变前后红外透射率差值为 41%。结果表明通过高效的钨掺杂可以降低 VO₂ 薄膜的相变温度,改善红外区域的透 射光谱特性,减小钨掺杂带来的透射率损失。

关键词 薄膜;热致变色;氮氧混合;共溅射;常压 中图分类号 O484 **文献标识码** A **doi:**10.3788/AOS201333.1231002

Fabrication and Optical Properties of Vanadium Dioxide Thin Films Doped by Tungsten-Vanadium Co-Sputtering

Qin Yuan¹ Li Yi^{1,2} Fang Baoying¹ Tong Guoxiang¹ Wang Xiaohua^{1,3} Ding Jie¹ Wang Feng¹ Yan Meng¹ Liang Qian¹ Chen Shaojuan¹ Chen Jiankun¹ Zheng Hongzhu¹ Yuan Wenrui¹

¹ School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

² Shanghai Key Laboratory of Modern Optical System, Shanghai 200093, China

³ Computer and Information Engineering College, Shanghai University of Electric Power, Shanghai 200090, China

Abstract In order to reduce high phase transition temperature and improve low transmittance contrast in the infrared (IR) region before and after phase transition caused by doping, W-doped VO₂ thin films with an obvious thermochromic behavior are fabricated by W-V co-sputtering on the glass substrates and annealed in a mixture of N₂ and O₂. Component and structure of VO₂ thin films oxidized in different ratios of N₂-O₂ mixture are analyzed. Results reveal that VO₂ grows in preferential crystal orientations along (011) and (200), and the particle dimension increases from 50 nm to 80 nm as O₂ content rises. Phase transition temperature of W-doped VO₂ thin films reduces to 31 °C , transmittance contrast in the IR region before and after phase transition is 41%. Results demonstrate that proper W-doped concentration can reduce the phase transition temperature, improve IR transmittance spectrum and gently change the transmittance contrast.

Key words thin films; thermochromic; N_2 - O_2 mixture; co-sputtering; normal pressure OCIS codes 160.4236; 160.4670; 160.6000; 160.6840

收稿日期: 2013-06-03; 收到修改稿日期: 2013-07-04

作者简介:覃 源(1988—),男,硕士研究生,主要从事光电材料与器件方面的研究。E-mail: qqyy11111@yeah.net 导师简介:李 毅(1964—),博士,博士生导师,主要从事光电材料与器件方面的研究。E-mail: optolyclp@263.net (通信联系人)

基金项目:国家 863 计划(2006AA03Z348)、教育部科学研究重点项目(207033)、上海市科学技术委员会科技攻关计划 (06DZ11415)、上海市教育委员会科技创新重点项目(10ZZ94)、"区域光纤通信网与新型光通信系统国家重点实验室"开放基金、上海市领军人才计划

1 引 盲

VO。作为一种热致变色材料已广泛应用于智 能窗、传感、激光防护、光存储等领域^[1-3]。VO₂薄 膜在 68 ℃时会发生半导体-金属相变,转变所需的 时间仅为皮秒量级,相变前后薄膜红外波段光透射 率、反射率发生突变,可见光区的透射率则几乎没有 变化。纯净 VO₂ 的相变温度(T_c)是 68 ℃且热滞回 线较宽,难以满足实际应用的要求[4-6]。目前研究 发现降低 T_c 的方法主要有两种:1) 改变钒氧化物 组分降低 T.。这种工艺尚在探索阶段,不能准确控 制 T_{c} ,还会产生热滞回线变宽的负面效果^[7]。2) 掺入杂质离子降低 T_{c} 。掺入 W^{6+} 、 Mo^{6+} 、 Nb^{5+} 、 Cr^{3+} 等离子可有效降低 T_c,其中钨掺杂降低 T_c的 效果最为明显[8-10]。但钨离子的掺入会导致半导 体态的 VO₂ 形成区域性能级,电子容易跃迁至导带 成为离域电子,对光的吸收变强,最终使薄膜的光透 射率下降[11]。

本文通过磁控共溅射技术在普通玻璃基底上沉积 钨钒金属薄膜^[12],沉积的金属膜在常压不同气氛中退 火,得到具有热致变色效应的 VO₂ 薄膜。摸索最佳工 艺参数如氮氧比、退火温度、时间等,以便缩短退火周 期,提高制膜效率。另外氮氧比变化直接影响薄膜组 分,进而对透射率、反射率、T。等参数产生巨大影响。 寻找特定的氮氧比是改善薄膜特性、提高薄膜质量的 有效手段,使整个钨掺杂 VO₂ 薄膜的制备过程满足操 作简单、成本低廉、性能稳定等实际生产要求。

2 实 验

通过对比分析不同钨掺杂浓度对氧化钒薄膜相 变特性的影响,选用靶材为掺钨 1.4%(原子数分 数,下同)的合金靶,可满足降低 T。且避免透射率 损失过大的要求。靶材尺寸为 ø120 mm×5 mm。

薄膜制备流程分为超声清洗,磁控溅射及后退 火三个步骤。实验采用共溅射的方法沉积钨钒薄 膜。将真空度抽到 4×10^{-3} Pa 后通入氩气,氩气流 量为 80 sccm(sccm 为标准状态下 1 mL/min),最终 溅射时真空度为 4×10^{-1} Pa。溅射电源频率为 13.56 MHz,溅射电流为 2 A,溅射电压为 400 V,溅 射时间 1 min 45 s,溅射过程中不另加烘烤电压。

钨钒金属膜在常压下进行退火处理,摸索不同 氮氧混合比对钨掺杂 VO₂ 薄膜性能的影响,工艺条 件如表1所示。实验表明退火温度 420 ℃、时间3h 为较佳退火参数,所有样片的掺钨 VO₂ 薄膜厚度约 为 200 nm。退火后对样片进行光电子能谱(XPS)、 X 射线衍射(XRD)、扫描电子显微镜(SEM)分析并 测量它们的热致光学特性。

表1 常压下氮氧混合退火工艺参数

Table 1 Annealing process parameters of N₂-O₂ mixture at normal pressure

Sample	N_2 : O_2	Temperature $/ ^{\circ} \mathbb{C}$	Time /h
1	80%:20%	420	3
2	70%:30%	420	3
3	60%:40%	420	3
4	50%:50%	420	3
5	40%:60%	420	3

3 结果与分析

3.1 XPS 分析

图 1 为样片 3 的 XPS 图样。结合能 285.1 eV 峰值处对应的 C1s 是表面附着物引起的,取 C1s 谱 线为标准矫正非导电样片的电荷效应。查看对比标 准结合能数据库可知结合能 515.3 eV 与 515.6 eV 处对应 V2p_{3/2},即存在 V³⁺ 2p_{3/2} 的 V₂O₃ 和 V⁴⁺ 2p_{3/2} 的 VO₂。结合能 523.2 eV 处较小峰值对应 V⁵⁺ 2p_{1/2},即存在少量 V₂O₅。结合能 35.8 eV 峰值 对应 W⁶⁺ 4f_{7/2},说明钨元素已成功掺入。钨掺杂机 理上是掺入 W⁴⁺,W⁴⁺ 使 V⁴⁺-V⁴⁺ 断裂,重新结合 成 V³⁺-V⁴⁺ 和 V³⁺-W^{6+[13]},故 XPS 图样中检测到 W⁶⁺ 4f_{7/2}。结合能 530 eV 附近的 O1s 峰值对应钒 氧化物和钨氧化物。图 1(c)是样品中钒元素的高 斯-洛伦兹曲线 拟合,可知样品中的主要成分是 VO₂,还含有部分 V₂O₅ 和 V₂O₃。

3.2 XRD 分析

XRD使用 CuKα 靶材, λ =0.15405 nm,工作电 流 40 A,工作电压 40 kV。从图 2 中可看出 VO₂ 主 衍射峰位于 28.049°和 37.036°附近,分别对应 (011)和(200)晶向。由于 V₂O₃ 主衍射峰的 2θ 角 与 VO₂ 主衍射峰接近,N₂:O₂=70%:30%时 V₂O₃ 含量较多,故样片 2 出现衍射峰部分重叠现象。氮 氧比不同会使薄膜组分发生改变,随着氧含量增加, V₂O₅ 主衍射峰强度显著增强。(011)、(200)晶向 的 VO₂ 均为 VO₂(M)型,拥有良好相变特性^[14]。 VO₂ 的生长具有明显的取向性,能看出(200)晶向 衍射峰值大于(011)晶向衍射峰值。(011)晶向是高 温时 VO₂ 的生长取向^[15],钨钒薄膜从常温开始加 热,通过控制升温速率和加热时间使生成的 VO₂ 颗粒大部分以(200)晶向生长。可以看到衍射峰的

图 1 样片 3 的 XPS 图 Fig. 1 XPS patterns of sample 3

半峰全宽(FWHM)都较小,通过谢乐公式 $D = K\lambda/B\cos\theta$ 可以计算出颗粒尺寸:样片 2 为 50.4 nm,样 片 3 为 54.7 nm,样片 4 为 89.4 nm,与 SEM 观察 结果相符。由布拉格方程可知原子间距离增大会导 致 2 θ 角减小,测量结果和 43-1051 PDF 标准卡相比 较符合理论分析,表明钨成功取代了 VO₂ 中的 V⁴⁺。

3.3 SEM 分析

图 3 为样片 3 尚未经退火处理的钨钒薄膜 SEM 图样,退火处理后薄膜表面形貌如图 4 所示。

图 3 未退火处理时钨钒薄膜的 SEM 图 Fig. 3 SEM pattern of W-V co-sputtered film without annealing

退火处理使颗粒间出现一定程度聚团现象,形成圆 柱状颗粒团。从图4中样片3的表面形貌可看出颗 粒大小为50~80 nm,表面较为平整光滑,无明显缺 陷。当通入氧气量较少时氧化聚团速度下降,从样 片2能观察到薄膜表面结晶度下降,颗粒大小无明 显变化。当通入的氧气量较多时,氧化聚团速度加 快,如图4中样片4的表面形貌所示,除缺陷数量增 加外,颗粒尺寸出现一定程度增大,结晶度增强,聚 团现象也更明显,这是因为通入氧含量的改变导致 薄膜组分发生变化,氮氧比适当时能制备出致密的 掺钨 VO₂薄膜。少氧时 V₂O₃ 比例上升,颗粒尺寸 无明显变化但结构上与 VO₂ 之间存在差异。多氧 时 V₂O₅ 比例上升,相比 VO₂ 颗粒尺寸更大,结晶 度也更好,同时导致间隙和颗粒尺寸略微变大。有 关 VO₂ 半导体到金属相变机制的实验和理论研究 表明,它是一个强关联电子体系,在金属-半导体的 相变中二氧化钒颗粒尺寸大小与热滞宽度有关系, 热滞周期的宽度和形状由颗粒大小和结晶的竞争效 应等决定。

图 4 不同氮氧比下掺钨薄膜退火后的 SEM 图 Fig. 4 SEM patterns of W-doped VO_2 films annealed with different ratios of N_2 to O_2

3.4 光学特性测试

采用美国 Perkin Elmer UV/VIS/NIR Spectrometer Lambda 9型分光光度计测量得到的透 射光谱如图 5 所示,样片 2、3、4 相变前后红外透射率 差值分别为 32%、41%、31%。氮氧比为 50%:50% 时样片 4 可见光区域透射率超过 50%。氮气气氛高 温退火使氧化钒中氧离子因离析而发生还原反应, 随着氧含量增加氧化速率大于还原速度,薄膜的 V₂O₅ 含量上升,所以可见光区域整体透射率呈上 升趋势。但红外区域的高透射率是 VO₂ 的固有光 学特性,氮氧比为 50%:50%时薄膜的 VO₂ 含量下 降,导致样片 4 的红外透射率比样片 3 的低。

Fig. 5 Transmittance spectra of W-doped film with different ratios of N_2 and O_2

图 6 是样片的透射率热滞回线,样片 2、3、4 的 T。分别为 33 ℃、31 ℃、34 ℃,掺钨量均为 1.4%。 W^{4+} 的掺入会导致 VO₂ 分子结构出现变化,成功的 掺杂使得 V⁴⁺-V⁴⁺ 断裂,重新结合成 V³⁺-V⁴⁺ 和 V³⁺-W⁶⁺。VO₂的相变是结构上由单斜金红石结 构向四方金红石结构变化的过程,T。与薄膜内应力 有密切关系,新键的形成使相变所需要克服的应力 减小,因而有效降低了 T。。由晶体学理论可知,在 单斜晶相中,钒离子沿 c 轴形成 $V^{4+}-V^{4+}$ 的同极结 合的形式,从而显现半导体性质。钨杂质的引入,破 坏了原 VO₂ 薄膜中的 V⁴⁺-V⁴⁺ 的同极结合,使单斜 结构变得不稳定,更易向金红石结构转变,导致相变 温度降低。此外,对于相同组分的 VO2 薄膜,如果 薄膜结构变得更为致密,则更易于引入内应力,为 VO₂ 完成晶体结构的转变提供了能量,导致其相变 温度降低。

样片的热滞回线宽度都在 3 ℃以下,相比不掺 钨时 6 ℃的宽度更窄。不同晶向的 VO₂ 之间存在 晶界缝隙,阻碍了能量的传递,使得相变需要更高的 能量才能完全发生。从 SEM 图中可以看到适当的 氮氧比可减小生成 VO₂ 颗粒的尺寸,钨掺杂也能起 到减小颗粒尺寸的效果,即减小了晶界间隙的宽度, 有效地改善了薄膜的热滞效应。

在掺入钨过程中将不可避免地提高电子浓度, 随着掺杂量增加出现区域性能级,薄膜对光的吸收 作用也就更加明显,导致透射率下降。为了减小掺 杂对透射率的损失,必须控制掺钨量并改善各项工 艺条件来提高掺杂的有效性。

图 6 热致变色薄膜在 2 μm 处的透射率热滞回线 Fig. 6 Curves of transmittance-temperature hysteresis of thermochromic films at 2 μm

4 结 论

 1) 在玻璃基底上常温共溅射沉积钨钒金属膜, 然后在常压氮氧比为 N₂:O₂ = 60%:40%的混合气 氛中退火,退火温度为420℃,退火时间为3h,可制 备 T。为 31 ℃且相变前后红外透射率差值达到 41%的热致变色薄膜。

2) 在相同退火温度和时间下,不同的氮氧比气 氛影响生成薄膜的表面特性,如粗糙度、颗粒大小。 随氧含量从 $N_2:O_2 = 70\%:30\%$ 增加到 $N_2:O_2 =$ 50%:50%,颗粒尺寸由 50 nm 增大到 80 nm。 $N_2:O_2 = 60\%:40\%$ 时薄膜表面缺陷数量较少。

3)共溅射制备得到的金属膜在常压不同气氛 中退火处理,使钒氧化物处于适当的比例,可以提高 钨掺杂的有效性。实验结果表明,在 N₂:O₂=60%: 40%的混合气氛下退火制备的钨掺杂 VO₂ 热致变 色薄膜,不仅相变温度降低至 31 ℃,而且热滞回线 从6 ℃变窄到 3 ℃以内。

参考文献

- 1 Carlos Batista, Ricardo M Ribeiro, Vasco Teixeira. Synthesis and characterization of VO_2 -based thermechromic thin films for energy-efficient windows [J]. Nanoscale Research Letter, 2011, 301(6): 1-7.
- 2 Zhou Sheng, Huang Yize, Tong Guoxiang, *et al.*. Study onthermochromic properties of VO₂/ZnO nanocrystalline

composite films [J]. Acta Physica Sinica, 2011, 60(9): 098104. 周 晟, 黄毅泽, 佟国香, 等. 纳米 VO₂/ZnO 复合薄膜的热致 变色特性研究[J]. 物理学报, 2011, 60(9): 098104.

- 3 Wei Xiongbang, Wu Zhiming, Wang Tao, et al.. Growth of vanadium oxide thin films on glass substrate [J]. Journal of Inorganic Materials, 2008, 23(2): 364-368.
 魏雄邦,吴志明,王 涛,等. 氧化钒薄膜在玻璃基片上的生长研究[J]. 无机材料学报, 2008, 23(2): 364-368.
- 4 R E Marvel, K Appavoo, B K Choi, *et al.*. Electron-beam deposition of vanadium dioxide thin films [J]. Appl Phys A, 2013, 111(3): 975-981.
- 5 A Pergament, P Boriskov, N Kuldin, *et al.*, Electrical conductivity of vanadium dioxide switching channel [J]. Physica Status Solidi B, 2010, 247(9): 2213-2217.
- 6 Fujita Shigeji, Jovaini Azita, Godoy, *et al.*. On the metalinsulator transition in vanadium dioxide [J]. Phys Lett A, 2012, 376(44): 2808-2811.
- 7 X S Tian, J C Liu, Q Wang. Component effect on the vanadium dioxide thin films phase transition character phenomenon observed [J]. Surface Phenomenon, 2008, 18(10): 1207-1211.
- 8 Zhu Huiqun, Li Yi, Wang Haifang, *et al.*. Infrared optical properties of thermochromic energy-saving thin films with nanostructure [J]. Acta Optica Sinica, 2010, 30(10): 2795-2798.

朱慧群,李 毅,王海方,等. 热致变色纳米节能薄膜红外光学特性[J]. 光学学报,2010,30(10):2795-2798.

 9 Wang Haifang, Li Yi, Yu Xiaojing, *et al.*. Study on temperature dependence of infrared optical properties of vanadium dioxide thin film [J]. Acta Optica Sinica, 2010, 30(5): 1522-1525.
 王海方,李 毅,俞晓静,等. 二氧化钒薄膜的变温红外光学特

性研究[J]. 光学学报, 2010, 30(5): 1522-1525.

10 Mao Mao, Huang Wanxia, Zhang Yaxin, et al.. Study on phase transition property of tungsten-doped vanadium dioxide thin film at terahertz range [J]. Journal of Inorganic Materials, 2012, 27 (8): 891-896.

毛 茂,黄婉霞,张雅鑫,等. 钨掺杂二氧化钒薄膜的 THz 波段 相变性能的研究[J]. 无机材料学报,2012,27(8):891-895.

- 11 Li Yi, Wang Haifang, Yu Xiaojing, *et al.*. Study of VO₂ thermochromic thin films fabricated by pulsed laser deposition [J]. Journal of Materials Engineering, 2009, (12): 83-88.
 李 毅,王海方,俞晓静,等.脉冲激光沉积法制 VO₂ 热致变色 薄膜研究进展[J]. 材料工程, 2009, (12): 83-88.
- 12 Zhou Sheng, Li Yi, Zhu Huiqun, *et al.*. Microstructure and thermochromic characteristics of low-cost vanadium-tungsten cosputtered thin films [J]. Surface and Coating Technology, 2012, 206(11): 2922-2926.
- 13 C Tang, P Georgopoulos, M E Fine, *et al.*. Local atomic and electronic arrangements in W_xV_{1-x}O₂[J]. Phys Rev B, 1985, 31 (2): 1000-1010.
- 14 L Y Wang, M C Li, L C Zhao, *et al.*. The effects of vacuum annealing on the structure of VO₂ thin films [J]. Surface and Coating Technology, 2007, 207(15); 6772-6776.
- 15 Liu Zhonghua, He Jie, Meng Qingkai, et al.. Relativity between annealing vacuum and phases of vanadium oxide thin films [J]. Journal of the Chinese Ceramic Society, 2007, 35(3): 348-352.
 刘中华,何 洁,孟庆凯,等.退火真空度与氧化钒薄膜物相的 相关性[J]. 硅酸盐学报, 2007, 35(3): 348-352.

栏目编辑:韩 峰